

Thermodynamics of Energy Conversion and Storage

Prof. Dr. Andreas ZÜTTEL
Assistant: Yasemen Kuddusi

EXERCISES 11

1) What measurement can you do to distinguish between a metal, semiconductor and a insulator?

Conductivity as a function of temperature:

metal: high and decreasing with increasing temperature

semiconductor: low and increasing with increasing temperature

insulator: very low, and no change with temperature

2) What energy corresponds to a visible photon?

visible spectrum: 400 - 800 nm

$$E = h \cdot v = h \cdot c / \lambda$$

$$E(400\text{nm}) = 6.626 \cdot 10^{-34} \cdot 3 \cdot 10^8 \text{m/s} / 4 \cdot 10^{-7} \text{m} / 1.60218 \cdot 10^{-19} \text{eV/J} = 3.1 \text{ eV}$$

$$E(800\text{nm}) = 6.626 \cdot 10^{-34} \cdot 3 \cdot 10^8 \text{m/s} / 8 \cdot 10^{-7} \text{m} / 1.60218 \cdot 10^{-19} \text{eV/J} = 1.55 \text{ eV}$$

3) Calculate the size of the PV in order to cover the electricity demand for a house (2 kW).

Electricity demand = 17'520 kWh/year

$$17'520 \text{ kWh/year} / 100 \text{ kWh/m}^2/\text{year} = 175 \text{ m}^2$$

4) Calculate the estimated growth rate per year for the installed peak power of PV.

Growth is approximately factor of 10 times in 5 years = factor of 1.6 per year

5) Calculate the surface area of PV necessary to cover the world energy consumption.

$$18 \cdot 24 \cdot 365 \text{ TWh/year} / 100 \text{ kWh/m}^2/\text{year} = 1.6 \cdot 10^{12} \text{ m}^2 = 1.6 \cdot 10^6 \text{ km}^2$$